Feeling Warm and Fuzzy

I have previously talked about developing a touch-free timer for use in surgery. The goal was to better enable a single researcher to maintain sterility during animal surgeries. I really think this is a genuine unmet need in the research world, and widespread adoption of touch-free surgery kit would be extremely beneficial, both to the researchers and to the animals.

Anyway, with the plan to expand my touch-free surgery range, I figured the next piece of kit should be a heat mat for keeping rodents warm in surgery. And again, I wanted something that can be controlled by touch-free sensors. Helpfully, Pi Hut sell a small, flexible heating pad:

Looking at the specs, it uses ~1 A of power, which is far more than we can safely run from an Arduino digital pin. In order to do this, we make use of a component called a MOSFET, which is a special kind of transistor used to amplify circuits. A MOSFET lets you use a digital signal (eg. an Arduino output pin) to fully switch a separate circuit (eg. a fully powered heat mat).

Therefore, using a MOSFET, I can control the power going to the heat mat by the digital output of the Arduino. I’ve mentioned pulse width modulation (PWM) before, and it is perfectly suited to this application. PWM will let me digitally control the amount of power going through the heat mat. And, best of all, because it’s digitally controlled, I can shift the PWM up/down with IR proximity sensors.

But, how to display the power going through the heat mat? For this, I again turned to Pi Hut, who sell a 10-segment LED bar:

Each LED in the bar is individually controlled, which means that I can set the Arduino to display an indication of the power going through the heat mat, on a scale of 1-10. Bringing it all together in a 3D printed housing, I have power up and power down proximity sensors, a power indicator bar, and a flexible heat mat that warms quickly to the extent determined by the user:

Touch-free heat mat for keeping rodents warm in surgery.

I have used this heat mat in surgery myself, and it worked really well. It heated up super quick and I could change the power of the heat mat to the temperature needed by the mouse. This piece of kit is indispensible for keeping rodents warm in surgery.

The one thing that I think it missing is an actual reading of the mouse’s temperature – I kept having to feel the surgery bed to check the temperature, which kind of defeats the purpose of being touch-free.

So, my next plan for this piece of kit is to add in a temperature sensor (whether a standalone one or one that runs through the Arduino, I have yet to figure out). Stay tuned for updates.

Leave a Reply

%d bloggers like this: